Towards F-theory MSSMs

Martin Bies

University of Pennsylvania

String Phenomenology Conference, Liverpool – July 6, 2022

With M. Cvetič, R. Donagi, M. Liu, M. Ong - 2102.10115, 2104.08297, 2205.00008

Motivation

- Go beyond chiral spectrum of SM constructions. [Talk by W. Taylor and K. Li]
 - \Rightarrow For MSSM, need one massless vector-like pair to accommodate the Higgs.

Motivation

- Go beyond chiral spectrum of SM constructions. [Talk by W. Taylor and K. Li]
 ⇒ For MSSM, need one massless vector-like pair to accommodate the Higgs.
- F-theory is cool. [Talk by W. Taylor]

 \Rightarrow Quadrillion F-theory standard models (QSMs). [Cvetič Halverson Lin Liu Tian '19]

Motivation

- Go beyond chiral spectrum of SM constructions. [Talk by W. Taylor and K. Li]
 ⇒ For MSSM, need one massless vector-like pair to accommodate the Higgs.
- F-theory is cool. [Talk by W. Taylor]
 - \Rightarrow Quadrillion F-theory standard models (QSMs). [Cvetič Halverson Lin Liu Tian '19]

Goal of this talk:

Compute vector-like spectra in reps. $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$, $(\overline{\mathbf{3}}, \mathbf{1})_{-2/3}$, $(\mathbf{1}, \mathbf{1})_1$ of F-theory QSMs.

Motivation

- Go beyond chiral spectrum of SM constructions. [Talk by W. Taylor and K. Li]
 ⇒ For MSSM, need one massless vector-like pair to accommodate the Higgs.
- F-theory is cool. [Talk by W. Taylor]
 - \Rightarrow Quadrillion F-theory standard models (QSMs). [Cvetič Halverson Lin Liu Tian '19]

Goal of this talk:

Compute vector-like spectra in reps. $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$, $(\overline{\mathbf{3}}, \mathbf{1})_{-2/3}$, $(\mathbf{1}, \mathbf{1})_1$ of F-theory QSMs.

Challenge

In global F-theory compactifications, vector-like spectra are non-topological.

[M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. Mayrhofer Weigand '18]

Motivation

- Go beyond chiral spectrum of SM constructions. [Talk by W. Taylor and K. Li]
 ⇒ For MSSM, need one massless vector-like pair to accommodate the Higgs.
- F-theory is cool. [Talk by W. Taylor]
 - \Rightarrow Quadrillion F-theory standard models (QSMs). [Cvetič Halverson Lin Liu Tian '19]

Goal of this talk:

Compute vector-like spectra in reps. $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$, $(\overline{\mathbf{3}}, \mathbf{1})_{-2/3}$, $(\mathbf{1}, \mathbf{1})_1$ of F-theory QSMs.

Challenge

In global F-theory compactifications, vector-like spectra are non-topological.

[M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. Mayrhofer Weigand '18]

Tool

Root bundles (genearlizations of spin bundles) on nodal curves.

Matter curve C _R	$n_{f R}=\#$ chiral fields in rep $f R$	$\# n_{\overline{\mathbf{R}}} = \text{chiral}$ fields in rep $\overline{\mathbf{R}}$	$\begin{vmatrix} & \text{Chiral index} \\ & \chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}} \end{vmatrix}$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$			
$C_{(1,2)_{-1/2}} = V(s_3, s_2 s_5^2 + s_1(s_1 s_9 - s_5 s_6))$			
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$			
$C_{(\mathbf{ar{3}},1)_{1/3}} = V\left(s_9, s_3 s_5^2 + s_6(s_1 s_6 - s_2 s_5) ight)$			
$C_{(1,1)_1} = V(s_1, s_5)$			
How to compute?			

Matter curve C _R	$n_{\mathbf{R}} = \#$ chiral fields in rep R	$\#$ $n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	$\begin{array}{c} \text{Chiral index} \\ \chi = \textit{n}_{\mathbf{R}} - \textit{n}_{\overline{\mathbf{R}}} \end{array}$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$			3
$C_{(1,2)_{-1/2}} = V(s_3, s_2 s_5^2 + s_1(s_1 s_9 - s_5 s_6))$			3
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$			3
$C_{(\mathbf{\bar{3}},1)_{1/3}} = V\left(s_9, s_3 s_5^2 + s_6(s_1 s_6 - s_2 s_5)\right)$			3
$C_{(1,1)_1} = V(s_1, s_5)$			3
How to compute?			

Matter curve C _R	$n_{\mathbf{R}} = \#$ chiral fields in rep R	$\# n_{\overline{\mathbf{R}}} = \text{chiral}$ fields in rep $\overline{\mathbf{R}}$	$\begin{vmatrix} & \text{Chiral index} \\ & \chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}} \end{vmatrix}$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$			3
$C_{(1,2)_{-1/2}} = V(s_3, s_2 s_5^2 + s_1(s_1 s_9 - s_5 s_6))$			3
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$			3
$C_{(\mathbf{ar{3}},1)_{1/3}} = V\left(s_9, s_3 s_5^2 + s_6(s_1 s_6 - s_2 s_5) ight)$			3
$C_{(1,1)_1} = V(s_1, s_5)$			3
How to compute?			$\chi = \int\limits_{S_{\mathbf{R}}} G_4$

Matter curve C _R	$n_{\mathbf{R}} = \#$ chiral fields in rep R	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	$\begin{array}{ l l l l l l l l l l l l l l l l l l l$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$			3
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$			3
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$			3
$C_{(\mathbf{\bar{3}},1)_{1/3}} = V\left(s_9, s_3 s_5^2 + s_6(s_1 s_6 - s_2 s_5) ight)$			3
$C_{(1,1)_1} = V(s_1, s_5)$			3
How to compute?			$\chi=\int\limits_{\mathcal{S}_{\mathbf{R}}}\mathcal{G}_{4}=3$ [Cvetič Halverson Lin Liu Tian '19]

Matter curve C _R	$n_{f R}=\#$ chiral fields in rep $f R$	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	$\begin{array}{c} \mbox{Chiral index} \\ \chi = n_{\rm R} - n_{\overline{\rm R}} \end{array}$
$C_{(3,2)_{1/6}} = V(s_3,s_9)$	3	0	3
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$	4	1	3
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$	3	0	3
$\frac{C_{(\mathbf{\bar{3}},1)_{1/3}} =}{V\left(s_9, s_3 s_5^2 + s_6(s_1 s_6 - s_2 s_5)\right)}$	3	0	3
$C_{(1,1)_1} = V(s_1, s_5)$	3	0	3
How to compute?			$\chi = \int \limits_{\mathcal{S}_{\mathbf{R}}} \mathcal{G}_{4} = 3$ [Cvetič Halverson Lin Liu Tian '19]

Matter curve C _R	$n_{f R}=\#$ chiral fields in rep $f R$	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	$\begin{array}{c c} & \text{Chiral index} \\ & \chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}} \end{array}$
$C_{(3,2)_{1/6}} = V(s_3,s_9)$	3	0	3
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$	4 (4, 1) = (3, 0) ∉	$1 \\ (1,1) = leptons + Higgs$	3
$C_{(\overline{3},1)_{-2/3}} = V(s_5,s_9)$	3	0	3
$\frac{C_{(\mathbf{\bar{3}},1)_{1/3}} =}{V\left(s_9, s_3 s_5^2 + s_6(s_1 s_6 - s_2 s_5)\right)}$	3	0	3
$C_{(1,1)_1} = V(s_1, s_5)$	3	0	3
How to compute?			$\chi = \int\limits_{\mathcal{S}_{R}} \mathcal{G}_{4} = 3$ [Cvetič Halverson Lin Liu Tian '19]

Matter curve C _R	$n_{f R}=\#$ chiral fields in rep $f R$	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	$\begin{vmatrix} & \text{Chiral index} \\ & \chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}} \end{vmatrix}$
$C_{(3,2)_{1/6}} = V(s_3,s_9)$	3	0	3
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$	4 (4, 1) = (3, 0) ∉	$1 \\ (1, 1) = leptons + Higgs$	3
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$	3	0	3
$C_{(\mathbf{\bar{3}},1)_{1/3}} = V(s_9, s_3s_5^2 + s_6(s_1s_6 - s_2s_5))$	3	0	3
$C_{(1,1)_1} = V(s_1, s_5)$	3	0	3
How to compute?	$h^0(C_{\mathbf{R}},\mathcal{L}_{\mathbf{R}})$	$h^1(C_{\mathbf{R}},\mathcal{L}_{\mathbf{R}})$	$\chi = \int \limits_{\mathcal{S}_{\mathbf{R}}} \mathcal{G}_{4} = 3$ [Cvetič Halverson Lin Liu Tian '19]

Matter curve C _R	$n_{f R}=\#$ chiral fields in rep $f R$	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	$\begin{array}{ l l } \hline & \text{Chiral index} \\ \chi = \textit{n}_{\mathbf{R}} - \textit{n}_{\overline{\mathbf{R}}} \end{array}$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$	3	0	3
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$	4 (4, 1) = (3, 0) 6	$1 \\ \oplus (1,1) = leptons + Higgs$	3
$C_{(\overline{3},1)_{-2/3}} = V(s_5, s_9)$	3	0	3
$C_{(\mathbf{\bar{3}},1)_{1/3}} = V(s_9, s_3s_5^2 + s_6(s_1s_6 - s_2s_5))$	3	0	3
$C_{(1,1)_1} = V(s_1, s_5)$	3	0	3
How to compute?	$h^0(\mathit{C}_{R}, \mathcal{L}_{R})$ [M.B. Mayrhofer Pehle Weig	$h^1(\mathcal{C}_{R},\mathcal{L}_{R})$ and '14], [M.B. Mayrhofer Weigand '17]	$\chi = \int\limits_{S_{R}} G_4 = 3$
	[M.B. '18]	and references therein	[Cvetič Halverson Lin Liu Tian '19]

Matter curve C _R	$n_{f R}=\#$ chiral fields in rep $f R$	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	$\begin{array}{c} \mbox{Chiral index} \\ \chi = \textit{n}_{\rm I\!R} - \textit{n}_{\overline{\rm I\!R}} \end{array}$
$C_{(3,2)_{1/6}} = V(s_3,s_9)$	3	0	3
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$	4 (4, 1) = (3, 0) 6	$1 \\ \oplus (1,1) = leptons + Higgs$	3
$C_{(\overline{3},1)_{-2/3}}=V(s_{5},s_{9})$	3	0	3
$C_{(\mathbf{\bar{3}},1)_{1/3}} = \\ V\left(s_9, s_3 s_5^2 + s_6(s_1 s_6 - s_2 s_5)\right)$	3	0	3
$C_{(1,1)_1} = V(s_1, s_5)$	3	0	3
How to compute?	$h^0(\mathit{C}_{R}, \mathcal{L}_{R})$ [M.B. Mayrhofer Pehle Weig	$h^1(\mathit{C}_{R}, \mathcal{L}_{R})$ and '14], [M.B. Mayrhofer Weigand '17]	$\begin{vmatrix} \chi = \deg \left(\mathcal{L}_{R} \right) - g \left(\mathcal{C}_{R} \right) + 1 \\ \chi = \int\limits_{\mathcal{S}_{R}} \mathcal{G}_{4} = 3 \end{vmatrix}$
	[M.B. '18]	and references therein	[Cvetič Halverson Lin Liu Tian '19]

Matter curve C _R	Necessary root bundle condition for $\mathcal{L}_{\textbf{R}}$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$	$ \begin{vmatrix} \mathcal{L}_{(3,2)_{1/6}}^{\otimes 36} = \mathcal{K}_{\mathcal{C}_{(3,2)_{1/6}}}^{\otimes 24} \\ \mathcal{L}_{(1,2)_{-1/2}}^{\otimes 36} = \mathcal{K}_{\mathcal{C}_{(1,2)_{-1/2}}}^{\otimes 22} \otimes \mathcal{O}_{\mathcal{C}_{(1,2)_{-1/2}}}(-30 \cdot Y_1) \end{vmatrix} $
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$	$ \mathcal{L}_{(1,2)_{-1/2}}^{\otimes 36} = \mathcal{K}_{\mathcal{C}_{(1,2)_{-1/2}}}^{\otimes 2^{2^{\prime}}} \otimes \mathcal{O}_{\mathcal{C}_{(1,2)_{-1/2}}}(-30 \cdot Y_{1}) $
$C_{(\mathbf{\overline{3}},1)_{-2/3}} = V(s_5, s_9)$	$\mathcal{L}_{(\bar{3}1)}^{\otimes 36} = \mathcal{K}_{C_{(\bar{2}1)}}^{\otimes 24}$
$C_{(\overline{3},1)_{1/3}} = V(s_9, s_3s_5^2 + s_6(s_1s_6 - s_2s_5))$	$\mathcal{L}_{(\bar{3},1)_{1/3}}^{\otimes 36} = \mathcal{K}_{C_{(\bar{3},1)_{1/3}}}^{\otimes 22} \otimes \mathcal{O}_{C_{(\bar{3},1)_{1/3}}}(-30 \cdot Y_3)$
$C_{(1,1)_1} = V(s_1, s_5)$	$\mathcal{L}_{(1,1)_{1}}^{\otimes 36} = \mathcal{K}_{\mathcal{C}_{(1,1)_{1}}}^{\otimes 24}$

Exponents of root bundle constraints for base 3-folds B_3 with $K_{B_3}^3$ = 18. See [M.B. Cvetič Donagi Liu Ong '21] for exponents of B_3 with other $K_{B_3}^3$.

Matter curve C _R	Necessary root bundle condition for \mathcal{L}_{R}
$C_{(3,2)_{1/6}} = V(s_3, s_9)$	$ \begin{vmatrix} \mathcal{L}_{(3,2)_{1/6}}^{\otimes 36} = \mathcal{K}_{\mathcal{C}_{(3,2)_{1/6}}}^{\otimes 24} \\ \mathcal{L}_{(1,2)_{-1/2}}^{\otimes 36} = \mathcal{K}_{\mathcal{C}_{(1,2)_{-1/2}}}^{\otimes 22} \otimes \mathcal{O}_{\mathcal{C}_{(1,2)_{-1/2}}}(-30 \cdot Y_1) \end{vmatrix} $
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$	$ \mathcal{L}_{(1,2)_{-1/2}}^{\otimes 36} = \mathcal{K}_{\mathcal{C}_{(1,2)_{-1/2}}}^{\otimes 2^{2^{\prime}}} \otimes \mathcal{O}_{\mathcal{C}_{(1,2)_{-1/2}}}(-30 \cdot Y_{1}) $
$C_{(\mathbf{\overline{3}},1)_{-2/3}} = V(s_5, s_9)$	$\mathcal{L}_{(\bar{3}1)}^{\otimes 36} = \mathcal{K}_{C_{\bar{2}1}}^{\otimes 24}$
$C_{(\overline{3},1)_{1/3}} = V(s_9, s_3s_5^2 + s_6(s_1s_6 - s_2s_5))$	$\mathcal{L}_{(\bar{3},1)_{1/3}}^{\otimes 36} = \mathcal{K}_{C_{(\bar{3},1)_{1/3}}}^{\otimes 22} \otimes \mathcal{O}_{C_{(\bar{3},1)_{1/3}}}(-30 \cdot Y_3)$
$C_{(1,1)_1} = V(s_1, s_5)$	$\mathcal{L}_{(1,1)_{1}}^{\otimes 36} = \mathcal{K}_{\mathcal{C}_{(1,1)_{1}}}^{\otimes 24}$

Exponents of root bundle constraints for base 3-folds B_3 with $K_{B_3}^3 = 18$. See [M.B. Cvetič Donagi Liu Ong '21] for exponents of B_3 with other $K_{B_3}^3$.

• Constraints highly non-trivial:

Infinitely many line bundles with $\chi = 3$ but only finitely many root bundles.

Matter curve C _R	Necessary root bundle condition for \mathcal{L}_{R}
$C_{(3,2)_{1/6}} = V(s_3, s_9)$	$ \begin{vmatrix} \mathcal{L}_{(3,2)_{1/6}}^{\otimes 36} = \mathcal{K}_{\mathcal{C}_{(3,2)_{1/6}}}^{\otimes 24} \\ \mathcal{L}_{(1,2)_{-1/2}}^{\otimes 36} = \mathcal{K}_{\mathcal{C}_{(1,2)_{-1/2}}}^{\otimes 22} \otimes \mathcal{O}_{\mathcal{C}_{(1,2)_{-1/2}}}(-30 \cdot Y_1) \end{vmatrix} $
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$	$ \mathcal{L}_{(1,2)_{-1/2}}^{\otimes 36} = \mathcal{K}_{\mathcal{C}_{(1,2)_{-1/2}}}^{\otimes 2^{2^{\prime}}} \otimes \mathcal{O}_{\mathcal{C}_{(1,2)_{-1/2}}}(-30 \cdot Y_{1}) $
$C_{(\mathbf{\overline{3}},1)_{-2/3}} = V(s_5, s_9)$	$\mathcal{L}_{(\bar{3}1)}^{\otimes 36} = \mathcal{K}_{C_{\bar{2}1}}^{\otimes 24}$
$C_{(\overline{3},1)_{1/3}} = V(s_9, s_3s_5^2 + s_6(s_1s_6 - s_2s_5))$	$\mathcal{L}_{(\bar{3},1)_{1/3}}^{\otimes 36} = \mathcal{K}_{C_{(\bar{3},1)_{1/3}}}^{\otimes 22} \otimes \mathcal{O}_{C_{(\bar{3},1)_{1/3}}}(-30 \cdot Y_3)$
$C_{(1,1)_1} = V(s_1, s_5)$	$\mathcal{L}_{(1,1)_{1}}^{\otimes 36} = \mathcal{K}_{\mathcal{C}_{(1,1)_{1}}}^{\otimes 24}$

Exponents of root bundle constraints for base 3-folds B_3 with $K_{B_3}^3 = 18$. See [M.B. Cvetič Donagi Liu Ong '21] for exponents of B_3 with other $K_{B_3}^3$.

• Constraints highly non-trivial:

Infinitely many line bundles with $\chi=3$ but only finitely many root bundles.

• Must not drop common exponents $(x^2 = 2^2 \neq x = 2)$.

Matter curve C _R	Necessary root bundle condition for \mathcal{L}_{R}				
$C_{(3,2)_{1/6}} = V(s_3, s_9)$	$ \begin{vmatrix} \mathcal{L}_{(3,2)_{1/6}}^{\otimes 36} = \mathcal{K}_{C_{(3,2)_{1/6}}}^{\otimes 24} \\ \mathcal{L}_{(1,2)_{-1/2}}^{\otimes 36} = \mathcal{K}_{C_{(1,2)_{-1/2}}}^{\otimes 22} \otimes \mathcal{O}_{C_{(1,2)_{-1/2}}}(-30 \cdot Y_1) \end{vmatrix} $				
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$	$ \mathcal{L}_{(1,2)_{-1/2}}^{\otimes 36} = K_{\mathcal{C}_{(1,2)_{-1/2}}}^{\otimes 2^{2^{\prime}}} \otimes \mathcal{O}_{\mathcal{C}_{(1,2)_{-1/2}}}(-30 \cdot Y_{1}) $				
$C_{(\bar{3},1)_{-2/3}} = V(s_5, s_9)$	$\mathcal{L}_{(\bar{3}1)}^{\otimes 30} = K_{C_{(\bar{2}1)}}^{\otimes 24}$				
$C_{(\overline{3},1)_{1/3}} = V(s_9, s_3s_5^2 + s_6(s_1s_6 - s_2s_5))$	$ \left \begin{array}{c} \mathcal{L}_{(\bar{3},1)_{1/3}}^{\otimes 36} = \mathcal{K}_{\mathcal{C}_{(\bar{3},1)_{1/3}}}^{\otimes 22} \otimes \mathcal{O}_{\mathcal{C}_{(\bar{3},1)_{1/3}}}(-30 \cdot Y_3) \end{array} \right $				
$C_{(1,1)_1} = V(s_1, s_5)$					

Exponents of root bundle constraints for base 3-folds B_3 with $K_{B_3}^3 = 18$. See [M.B. Cvetič Donagi Liu Ong '21] for exponents of B_3 with other $K_{B_3}^3$.

Constraints highly non-trivial:

Infinitely many line bundles with $\chi = 3$ but only finitely many root bundles.

- Must not drop common exponents $(x^2 = 2^2 \not\Rightarrow x = 2)$.
- \Rightarrow Agenda: Vector-like spectra of the QSMs from studying root bundles.

• Natural to physics: Spin bundle S satisfies $S^2 = K_C$.

- Natural to physics: Spin bundle S satisfies $S^2 = K_C$.
- Smooth irreducible curve C of genus g: [Griffiths Harris "Principles of algebraic geometry" '94] Fix $T \in Pic(C)$, $r \in \mathbb{Z}_{\geq 2}$ with r | deg(T):
 - There are exactly r^{2g} line bundles $\mathcal{L} \in \operatorname{Pic}(\mathcal{C})$ with $\mathcal{L}^r = \mathcal{T}$.
 - Theory: Obtain all roots by twist one such \mathcal{L} with *r*-torsion points of $\operatorname{Jac}(C)$.
 - Practice: Tough. Related: Discrete logarithm in Picard group of elliptic curve used for elliptic-curve cryptography).

- Natural to physics: Spin bundle S satisfies $S^2 = K_C$.
- Smooth irreducible curve C of genus g: [Griffiths Harris "Principles of algebraic geometry" '94] Fix $T \in Pic(C)$, $r \in \mathbb{Z}_{\geq 2}$ with r | deg(T):
 - There are exactly r^{2g} line bundles $\mathcal{L} \in \operatorname{Pic}(\mathcal{C})$ with $\mathcal{L}^r = \mathcal{T}$.
 - Theory: Obtain all roots by twist one such \mathcal{L} with *r*-torsion points of $\operatorname{Jac}(\mathcal{C})$.
 - Practice: Tough. Related: Discrete logarithm in Picard group of elliptic curve used for elliptic-curve cryptography).
- Nodal curve C^{\bullet} of genus g: [Jarves '98], [Caporaso Casagrande Cornalba '04] Fix $T^{\bullet} \in \operatorname{Pic}(C^{\bullet})$, $r \in \mathbb{Z}_{\geq 2}$ with $r | \operatorname{deg}(T^{\bullet})$:
 - There are exactly r^{2g} solutions to $\mathcal{L}^{\bullet} \in \operatorname{Pic}(\mathcal{C}^{\bullet})$ with $(\mathcal{L}^{\bullet})^r = \mathcal{T}^{\bullet}$.
 - Theory: Explicit description from bi-weighted graphs. [Caporaso Casagrande Cornalba '04]
 - Practice: Combinatoric challenging often doable.

- Natural to physics: Spin bundle S satisfies $S^2 = K_C$.
- Smooth irreducible curve C of genus g: [Griffiths Harris "Principles of algebraic geometry" '94] Fix $T \in Pic(C)$, $r \in \mathbb{Z}_{\geq 2}$ with r | deg(T):
 - There are exactly r^{2g} line bundles $\mathcal{L} \in \operatorname{Pic}(\mathcal{C})$ with $\mathcal{L}^r = \mathcal{T}$.
 - Theory: Obtain all roots by twist one such \mathcal{L} with *r*-torsion points of $\operatorname{Jac}(\mathcal{C})$.
 - Practice: Tough. Related: Discrete logarithm in Picard group of elliptic curve used for elliptic-curve cryptography).
- Nodal curve C^{\bullet} of genus g: [Jarves '98], [Caporaso Casagrande Cornalba '04] Fix $T^{\bullet} \in \operatorname{Pic}(C^{\bullet})$, $r \in \mathbb{Z}_{\geq 2}$ with $r | \operatorname{deg}(T^{\bullet})$:
 - There are exactly r^{2g} solutions to $\mathcal{L}^{\bullet} \in \operatorname{Pic}(\mathcal{C}^{\bullet})$ with $(\mathcal{L}^{\bullet})^{r} = \mathcal{T}^{\bullet}$.
 - Theory: Explicit description from bi-weighted graphs. [Caporaso Casagrande Cornalba '04]
 - Practice: Combinatoric challenging often doable.

Refined idea

Learn about the vector-like spectra of the QSMs from root bundles on **nodal** curves.

Example: Bi-weighted graph encoding limit root

Example: Bi-weighted graph encoding limit root

Martin Bies

Martin Bies

Philosophy: Local, bottom-up and FRST invariant

[M.B. Cvetič Donagi Liu Ong '21], [M.B. Cvetič Liu '21], [M.B. Cvetič Donagi Ong '22]

Philosophy: Local, bottom-up and FRST invariant

[M.B. Cvetič Donagi Liu Ong '21], [M.B. Cvetič Liu '21], [M.B. Cvetič Donagi Ong '22]

[Klevers Peña Oehlmann Piragua Reuter '14], [Cvetič Klevers Peña Oehlmann Reuter '15], [Cvetič Lin Liu Oehlmann '18], [Cvetič Halverson Lin Liu Tian '19], ...

Interlude: Computer algebra systems

- Triangulations in [M.B. Cvetič Donagi Ong '22] done with the modern computer algebra system OSCAR, which due to the use of the Julia programming language is expected to be very performant.
- For *fast* triangulations, also look at CY-Tools [Liam McAllister group], which hopefully can be available via OSCAR soon.

Towards "good" physical roots

(Naive) Brill-Noether theory for root bundles

Discriminate the r^{2g} line bundles $\mathcal{L} \in \text{Pic}(\mathcal{C})$ with $\mathcal{L}^r = \mathcal{T}$ according to $h^0(\mathcal{C}, \mathcal{L})$:

$$r^{2g} = N_0 + N_1 + N_2 + \dots, \qquad (1)$$

where N_i is the number of those root bundles \mathcal{L} with $h^0(C, \mathcal{L}) = i$.

Towards "good" physical roots

(Naive) Brill-Noether theory for root bundles

Discriminate the r^{2g} line bundles $\mathcal{L} \in \text{Pic}(\mathcal{C})$ with $\mathcal{L}^r = \mathcal{T}$ according to $h^0(\mathcal{C}, \mathcal{L})$:

$$r^{2g} = N_0 + N_1 + N_2 + \dots, \qquad (1)$$

where N_i is the number of those root bundles \mathcal{L} with $h^0(C, \mathcal{L}) = i$.

Current standing

- Systematic answer unknown (to my knowledge).
- For sufficiently simple setups can count N_i, **but**:
 - Ignorance: Currently, we can sometimes only compute a lower bound to h^0 .
 - Jumping circuits: h^0 can jump if nodes are specially aligned. [M.B. Cvetič Donagi Ong '22]
 - \Rightarrow Denote the number of these cases by $\widetilde{N}_{\geq i}$.

$$r^{2g} = \left(\widetilde{N}_0 + \widetilde{N}_{\geq 0}\right) + \left(\widetilde{N}_1 + \widetilde{N}_{\geq 1}\right) + \dots$$

(2)

Brill-Noether numbers of $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$ in QSMs

- First estimates computed in [M.B. Cvetič Liu '21]:
 - count "simple" root bundles with minimal h^0 ,
 - no estimate for $N_{\geq i}$.
- Refinements/extensions in [M.B. Cvetič Donagi Ong '22]:
 - count all root bundles,
 - discriminate via line bundle cohomology on rational tree-like nodal curves,

QSM-family (KS polytope)	# FRSTs	$\ h^0 = 3$	$h^0 \ge 3$	$ h^0 = 4$	$h^0 \ge 4$
Δ_8°	$egin{array}{l} \sim 10^{15} \ \sim 10^{11} \ \sim 10^{10} \ \sim 10^{11} \ \sim 10^{11} \end{array}$	57.3%	?	?	?
Δ_4°	$\sim 10^{11}$	53.6%	?	?	?
Δ°_{134}	$\sim 10^{10}$	48.7%	?	?	?
Δ_{128}° , Δ_{130}° , Δ_{136}° , Δ_{236}°	$\sim 10^{11}$	42.0%	?	?	?

Brill-Noether numbers of $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$ in QSMs

- First estimates computed in [M.B. Cvetič Liu '21]:
 - count "simple" root bundles with minimal h^0 ,
 - no estimate for $N_{\geq i}$.
- Refinements/extensions in [M.B. Cvetič Donagi Ong '22]:
 - count all root bundles,
 - discriminate via line bundle cohomology on rational tree-like nodal curves,

QSM-family (KS polytope)	$\# FRSTs \parallel$	$h^{0} = 3$	$h^0 \geq 3 \mid h^0 = 4$	$h^0 \ge 4$
$\begin{array}{c} \Delta_8^{\circ} \\ \Delta_4^{\circ} \\ \Delta_{134}^{\circ} \\ \Delta_{128}^{\circ}, \Delta_{130}^{\circ}, \Delta_{136}^{\circ}, \Delta_{236}^{\circ} \end{array}$	$egin{array}{c} \sim 10^{15} \ \sim 10^{11} \ \sim 10^{10} \ \sim 10^{11} \end{array} \end{array}$	76.4% 99.0% 99.8% 99.9%	23.6% 1.0% 0.2% 0.1%	

Can we do better for $B_3(\Delta_4^\circ)$? The 1% contains ...

• Stationary circuits with $h^0 = 3$:

Can we do better for $B_3(\Delta_4^\circ)$? The 1% contains ...

• Stationary circuits with $h^0 = 3$:

$$h^0 = 1$$
 $h^0 = 2$ $h^0 = 2$

- ,
- Jumping circuit with $h^0 = 4$:

Can we do better for $B_3(\Delta_4^\circ)$? The 1% contains ...

• Stationary circuits with $h^0 = 3$:

 $h^0 = 2$

• Jumping circuit with $h^0 = 4$:

Mistake in first preprint [M.B. Cvetič Donagi Ong '22]

 $h^0 = 3$

- We wrongly computed h^0 for the jumping circuit. Correction on the ArXiV.
- \Rightarrow B₃(Δ_4°): 99.995% of solutions to **necessary** root bundle constraint have $h^0 = 3$.

 $h^0 = 2$

Brill-Noether numbers of $(\overline{\mathbf{3}},\mathbf{2})_{1/6}$ in QSMs [M.B. Cvetič Donagi Ong '22]

QSM-family (polytope)	$ h^0 = 3$	$h^0 \geq 3$	$h^0 = 4$	$h^0 \ge 4$	$ h^0 = 5$	$h^0 \ge 5$	$h^0 = 6$	$h^0 \ge 6$
Δ°_{88}	74.9	22.1	2.5	0.5	0.0	0.0		
Δ°_{110}	82.4	14.1	3.1	0.4	0.0			
$\Delta^{\circ}_{272}, \Delta^{\circ}_{274}$	78.1	18.0	3.4	0.5	0.0	0.0		
Δ°_{387}	73.8	21.9	3.5	0.7	0.0	0.0		
$\Delta_{798}^\circ,\ \Delta_{808}^\circ,\ \Delta_{810}^\circ,\ \Delta_{812}^\circ$	77.0	17.9	4.4	0.7	0.0	0.0		
Δ°_{254}	95.9	0.5	3.5	0.0	0.0	0.0		
Δ°_{52}	95.3	0.7	3.9	0.0	0.0	0.0		
Δ°_{302}	95.9	0.5	3.5	0.0	0.0			
Δ°_{786}	94.8	0.3	4.8	0.0	0.0	0.0		
Δ°_{762}	94.8	0.3	4.9	0.0	0.0	0.0		
Δ_{417}°	94.8	0.3	4.8	0.0	0.0	0.0	0.0	
Δ°_{838}	94.7	0.3	5.0	0.0	0.0	0.0		
Δ°_{782}	94.6	0.3	5.0	0.0	0.0	0.0		
Δ°_{377} , Δ°_{499} , Δ°_{503}	93.4	0.2	6.2	0.0	0.1	0.0		
Δ°_{1348}	93.7	0.0	6.2	0.0	0.1		0.0	
Δ°_{882} , Δ°_{856}	93.4	0.3	6.2	0.0	0.1	0.0	0.0	
Δ°_{1340}	92.3	0.0	7.6	0.0	0.1		0.0	
Δ°_{1879}	92.3	0.0	7.5	0.0	0.1		0.0	
Δ°_{1384}	90.9	0.0	8.9	0.0	0.2		0.0	

Martin Bies

Summary and outlook

• Statistical observation (cf. [talk by W. Taylor]):

In QSMs, absence of vector-like exotics in $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$, $(\overline{\mathbf{3}}, \mathbf{1})_{-2/3}$, $(\mathbf{1}, \mathbf{1})_1$ likely, but ...

- Sufficient condition for quantization of G₄-flux? [Jefferson Taylor Turner '21].
- F-theory gauge potential
 - may select (proper) subset of these root bundles,
 - lead to correlated choices on distinct matter curves.
- Vector-like spectra on $C_{\mathbf{R}}^{\bullet}$ "upper bound" to those on $C_{\mathbf{R}}$.
 - $\leftrightarrow \text{ Understand "drops" from Yukawa interactions?} \quad \text{[Cvetič Lin Liu Zhang Zoccarato '19]}$
 - \rightarrow Towards the Higgs \ldots
- Computationally, Higgs curve currently too challenging.
 - Need Brill-Noether theory for root bundles on nodal curves.
 Map from (dual) graphs (and a couple of integers) to Brill-Noether numbers.
 ↔ Arena for machine learning? [W.i.p. with R. Hochwert]
- Probability/statistics for F-theory setups to arise without vector-like exotics.

Thank you for your attention!

