Towards F-theory MSSMs

Martin Bies
University of Pennsylvania
String Phenomenology Conference, Liverpool - July 6, 2022

With M. Cvetič, R. Donagi, M. Liu, M. Ong - 2102.10115, 2104.08297, 2205.00008

Motivation, goal, challenge and tool

Motivation

- Go beyond chiral spectrum of SM constructions. [Talk by w. Taylor and K. Li] \Rightarrow For MSSM, need one massless vector-like pair to accommodate the Higgs.

Motivation, goal, challenge and tool

Motivation

- Go beyond chiral spectrum of SM constructions. [Talk by W. Taylor and K. Li] \Rightarrow For MSSM, need one massless vector-like pair to accommodate the Higgs.
- F-theory is cool. [Talk by w. Taylor]
\Rightarrow Quadrillion F-theory standard models (QSMs). [Cvetić Halverson Lin Liu Tian '19]

Motivation, goal, challenge and tool

Motivation

- Go beyond chiral spectrum of SM constructions. [Talk by W. Taylor and K. Li] \Rightarrow For MSSM, need one massless vector-like pair to accommodate the Higgs.
- F-theory is cool. [Talk by w. Taylor]
\Rightarrow Quadrillion F-theory standard models (QSMs). [Cvetić Haverson Lin Liu Tian '19]
Goal of this talk:
Compute vector-like spectra in reps. $(\overline{\mathbf{3}}, \mathbf{2})_{1 / 6},(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3},(\mathbf{1}, \mathbf{1})_{1}$ of F-theory QSMs.

Motivation, goal, challenge and tool

Motivation

- Go beyond chiral spectrum of SM constructions. [Talk by W. Taylor and K. Li] \Rightarrow For MSSM, need one massless vector-like pair to accommodate the Higgs.
- F-theory is cool. [Tak by W. Taylor]
\Rightarrow Quadrillion F-theory standard models (QSMs). [Cvetić Halverson Lin Liu Tian '19]
Goal of this talk:
Compute vector-like spectra in reps. $(\overline{\mathbf{3}}, \mathbf{2})_{1 / 6},(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3},(\mathbf{1}, \mathbf{1})_{1}$ of F-theory QSMs.

Challenge

In global F-theory compactifications, vector-like spectra are non-topological.
[M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. Mayrhofer Weigand '18]

Motivation, goal, challenge and tool

Motivation

- Go beyond chiral spectrum of SM constructions. [Talk by W. Taylor and K. Li] \Rightarrow For MSSM, need one massless vector-like pair to accommodate the Higgs.
- F-theory is cool. [Tak by w. Taylor]
\Rightarrow Quadrillion F-theory standard models (QSMs). [Cvetić Halverson Lin Liu Tian '19]
Goal of this talk:
Compute vector-like spectra in reps. $(\overline{\mathbf{3}}, \mathbf{2})_{1 / 6},(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3},(\mathbf{1}, \mathbf{1})_{1}$ of F-theory QSMs.

Challenge

In global F-theory compactifications, vector-like spectra are non-topological.
[M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. Mayrhofer Weigand '18]

Tool

Root bundles (genearlizations of spin bundles) on nodal curves.

Chiral and desired vector-like spectra in the QSMs

Matter curve C_{R}	$n_{\mathrm{R}}=\#$ chiral fields in rep \mathbf{R}	$\# n_{\bar{R}}=$ chiral fields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$			
$\begin{gathered} C_{(1,2)_{-1 / 2}}= \\ V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right) \end{gathered}$			
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$			
$\begin{gathered} C_{(\overline{3}, 1)_{1 / 3}}= \\ V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right) \end{gathered}$			
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$			
How to compute?			

Chiral and desired vector-like spectra in the QSMs

Matter curve $C_{\mathbf{R}}$	$n_{\mathbf{R}}=$ \# chiral fields in rep \mathbf{R}	$\# n_{\overline{\mathbf{R}}}=$ chiral fields in rep $\overline{\mathbf{R}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$		Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$C_{(1,2)-1 / 2}=$ $V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right)$		3
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$		3
$C_{\overline{\mathbf{3}}, 1)_{1 / 3}}=$ $V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right)$	3	
$C_{(\mathbf{1 , 1})_{1}}=V\left(s_{1}, s_{5}\right)$		3

Chiral and desired vector-like spectra in the QSMs

Matter curve C_{R}	$n_{\mathrm{R}}=\#$ chiral fields in rep \mathbf{R}	$\# n_{\bar{R}}=$ chiral fields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$			3
$\begin{gathered} C_{(1,2)_{-1 / 2}}= \\ V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right) \end{gathered}$			3
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$			3
$\begin{gathered} C_{(\overline{3}, 1)_{1 / 3}}= \\ V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right) \end{gathered}$			3
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$			3
How to compute?			$\chi=\int_{S_{\mathrm{R}}} G_{4}$

Chiral and desired vector-like spectra in the QSMs

Matter curve C_{R}	$n_{\mathrm{R}}=\#$ chiral fields in rep \mathbf{R}	$\# n_{\overline{\mathrm{R}}}=$ chiral fields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$			3
$\begin{gathered} C_{(1,2)-1 / 2}= \\ V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right) \end{gathered}$			3
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$			3
$\begin{gathered} C_{(\overline{3}, 1)_{1 / 3}}= \\ V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right) \end{gathered}$			3
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$			3
How to compute?			$\chi=\int_{S_{\mathrm{R}}} G_{4}=3$

Chiral and desired vector-like spectra in the QSMs

Matter curve C_{R}	$n_{\mathbf{R}}=\# \text { chiral }$ fields in rep \mathbf{R}	$\# n_{\bar{R}}=$ chiral fields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	3	0	3
$\begin{gathered} C_{(1,2)_{-1 / 2}}= \\ V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right) \end{gathered}$	4	1	3
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$	3	0	3
$\begin{gathered} C_{(\overline{3}, 1)_{1 / 3}}= \\ V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right) \end{gathered}$	3	0	3
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$	3	0	3
How to compute?			$\chi=\int_{S_{R}} G_{4}=3$

Chiral and desired vector-like spectra in the QSMs

Matter curve C_{R}	$n_{\mathrm{R}}=\# \text { chiral }$ fields in rep \mathbf{R}	$\# n_{\overline{\mathrm{R}}}=$ chiral fields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	3	0	3
$\begin{gathered} C_{(1,2)-1 / 2}= \\ V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right) \end{gathered}$	4 $(4,1)=(3,4$	$\begin{gathered} 1 \\ 1)=\text { leptons }+ \text { Higgs } \end{gathered}$	3
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$	3	0	3
$\begin{gathered} C_{(\overline{3}, 1)_{1 / 3}}= \\ V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right) \end{gathered}$	3	0	3
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$	3	0	3
How to compute?			$\chi=\int_{S_{\mathrm{R}}} G_{4}=3$

Chiral and desired vector-like spectra in the QSMs

Matter curve C_{R}	$n_{\mathrm{R}}=\#$ chiral fields in rep \mathbf{R}	$\# n_{\overline{\mathrm{R}}}=\text { chiral }$ fields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	3	0	3
$\begin{gathered} C_{(1,2)_{-1 / 2}}= \\ V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right) \end{gathered}$	4 $(4,1)=(3,0)$	$\begin{gathered} 1 \\ \left.{ }^{1}\right)=\text { leptons }+ \text { Higgs } \end{gathered}$	3
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$	3	0	3
$\begin{gathered} C_{(\overline{3}, 1)_{1 / 3}}= \\ V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right) \end{gathered}$	3	0	3
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$	3	0	3
How to compute?	$h^{0}\left(\mathcal{C}_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}\right)$	$h^{1}\left(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}\right)$	$\chi=\int_{S_{\mathrm{R}}} G_{4}=3$

Chiral and desired vector-like spectra in the QSMs

Matter curve C_{R}	$n_{R}=\# \text { chiral }$ fields in rep \mathbf{R}	$\# n_{\overline{\mathrm{R}}}=$ chiral fields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	3	0	3
$\begin{gathered} C_{(1,2)_{-1 / 2}}= \\ V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right) \end{gathered}$	$(4,1)=(3,0) \oplus(1,1)=$ leptons + Higgs		3
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$	3	0	3
$\begin{gathered} C_{(\overline{3}, 1)_{1 / 3}}= \\ V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right) \end{gathered}$	3	0	3
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$	3	0	3
How to compute?	$\overline{h^{0}\left(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}\right)}$ [M.B. Mayrhofer Pehle W [M.B. '	$h^{1}\left(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}\right)$ 4], [M.B. Mayrhofer Weigand '17] eferences therein	$\chi=\int_{S_{\mathrm{R}}} G_{4}=3$

Chiral and desired vector-like spectra in the QSMs

Matter curve C_{R}	$n_{R}=\# \text { chiral }$ fields in rep \mathbf{R}	$\# n_{\overline{\mathrm{R}}}=$ chiral fields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	3	0	3
$\begin{gathered} C_{(1,2)-1 / 2}= \\ V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right) \end{gathered}$	$\begin{aligned} & 4 \\ & (4,1)=(3,0 \end{aligned}$	$\begin{gathered} 1 \\ 1)=\text { leptons }+ \text { Higgs } \end{gathered}$	3
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$	3	0	3
$\begin{gathered} C_{(\overline{\mathbf{3}}, 1)_{1 / 3}}= \\ V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right) \end{gathered}$	3	0	3
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$	3	0	3
How to compute?	$\overline{h^{0}\left(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}\right)}$ [M.B. Mayrhofer Pehle W [M.B. '	$h^{1}\left(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}\right)$ 4], [M.B. Mayrhofer Weigand '17]	$\begin{gathered} \chi=\operatorname{deg}\left(\mathcal{L}_{\mathbf{R}}\right)-g\left(C_{\mathrm{R}}\right)+1 \\ \chi=\int_{S_{\mathrm{R}}} G_{4}=3 \end{gathered}$ [Cvetič Halverson Lin Liu Tian '19]

Matter curve C_{R}	Necessary root bundle condition for $\mathcal{L}_{\mathbf{R}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	$\mathcal{L}_{(3,2)_{1 / 6}}^{\otimes 36}=K_{C_{(3,2)}}^{\otimes 24}$
$C_{(1,2)_{-1 / 2}}=V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right)$	$\mathcal{L}_{(1,2)_{-1 / 2}}^{\otimes 36}=K_{C_{(1,2)-1 / 2} \otimes 22}^{\otimes 20} \mathcal{O}_{C_{(1,2)-1 / 2}}\left(-30 \cdot Y_{1}\right)$
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$	$\mathcal{L}_{(\overline{3}, 1)_{-2 / 3}}^{\otimes 36}=K_{(\overline{3}, 1)_{-2 / 3}}^{\otimes 24-1 / 2}$
$C_{(\overline{3}, 1)_{1 / 3}}=V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right)$	$\mathcal{L}_{(\overline{3}, 1)_{1 / 3}}^{\otimes 36}=K_{C_{(\overline{3}, 1)_{1 / 3}}^{822}}^{\otimes 2,1)-2 / 3} \otimes \mathcal{O}_{C_{(\overline{3}, 1)_{1 / 3}}}\left(-30 \cdot Y_{3}\right)$
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$	$\mathcal{L}_{(1,1)_{1}}^{\otimes 36}=K_{C_{(1,1)_{1}} \underbrace{24}}^{\otimes 24}$

Exponents of root bundle constraints for base 3-folds B_{3} with $K_{B_{3}}^{3}=18$. See [M.B. Cvetič Donagi Liu Ong '21] for exponents of B_{3} with other $K_{B_{3}}^{3}$.

Matter curve C_{R}	Necessary root bundle condition for \mathcal{L}_{R}
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	$\mathcal{L}_{(3,2)_{1 / 6}}^{\otimes 36}=K_{C_{(3,2)_{1 / 6}}^{\otimes 24}}^{\left(L^{\prime}\right.}$
$C_{(1,2))_{-1 / 2}}=V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right)$	$\mathcal{L}_{(1,2)_{-1 / 2}}^{\otimes 36}=K_{C_{(1,2)-1 / 2}}^{\otimes 22}{ }^{2 / 6} \mathcal{O}_{C_{(1,2)-1 / 2}}\left(-30 \cdot Y_{1}\right)$
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$	$\mathcal{L}_{(\overline{3}, 1)_{-2 / 3}}^{\otimes 36}=K_{C_{(\overline{3}, 1)_{-2 / 2}}^{\otimes 24-1 / 2}}^{8, ~}$
$C_{(\overline{3}, 1)_{1 / 3}}=V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right)$	$\mathcal{L}_{(3,1)_{1 / 3}}^{\otimes 36}=K_{C_{(\overline{3}, 1)_{1 / 3}}^{\otimes 22}}^{\otimes 2,2 / 3} \otimes \mathcal{O}_{C_{(\overline{3}, 1)_{1 / 3}}}\left(-30 \cdot Y_{3}\right)$
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$	

Exponents of root bundle constraints for base 3-folds B_{3} with $K_{B_{3}}^{3}=18$. See [M.B. Cvetič Donagi Liu Ong '21] for exponents of B_{3} with other $K_{B_{3}}^{3}$.

- Constraints highly non-trivial:

Infinitely many line bundles with $\chi=3$ but only finitely many root bundles.

Matter curve $C_{\text {R }}$	Necessary root bundle condition for $\mathcal{L}_{\mathbf{R}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	$\mathcal{L}_{(3,2)_{1 / 6}}^{\otimes 36}=K_{C_{(3,2)_{1 / 6}}^{\otimes 24}}^{\otimes 2}$
$C_{(1,2)_{-1 / 2}}=V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right)$	$\mathcal{L}_{(1,2)_{-1 / 2}}^{\otimes 36}=K_{C_{(1,2)_{-1 / 2}}^{\otimes 22}}^{\otimes 2 .} \otimes \mathcal{O}_{C_{(1,2)_{-1 / 2}}}\left(-30 \cdot Y_{1}\right)$
$C_{(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$	$\mathcal{L}_{(\overline{\mathbf{3}}, 1)_{-2 / 3}}^{\otimes 36}=K_{C_{(\overline{3}, 1)_{-2 / 3}}^{\otimes 24}}^{\otimes 2}$
$C_{(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}}=V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right)$	
$C_{(\mathbf{1 , 1})_{1}}=V\left(s_{1}, s_{5}\right)$	$\mathcal{L}_{(\mathbf{1}, \mathbf{1})_{1}}^{\otimes 36}=K_{C_{(1,1)_{1}}}^{\otimes 24}$

Exponents of root bundle constraints for base 3-folds B_{3} with $K_{B_{3}}^{3}=18$. See [M.B. Cvetič Donagi Liu Ong '21] for exponents of B_{3} with other $K_{B_{3}}^{3}$.

- Constraints highly non-trivial:

Infinitely many line bundles with $\chi=3$ but only finitely many root bundles.

- Must not drop common exponents $\left(x^{2}=2^{2} \nRightarrow x=2\right)$.

Matter curve $C_{\text {R }}$	Necessary root bundle condition for $\mathcal{L}_{\mathbf{R}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	$\mathcal{L}_{(\mathbf{3}, \mathbf{2})_{1 / 6}}^{\otimes 36}=K_{C_{(3,2)_{1 / 6}}^{\otimes 24}}^{\otimes 24}$
$C_{(1,2)_{-1 / 2}}=V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right)$	$\mathcal{L}_{(\mathbf{1}, 2)_{-1 / 2}}^{\otimes 36}=K_{C_{(1,2)-1 / 2}}^{\otimes 22} \otimes \mathcal{O}_{C_{(1,2)}-1 / 2}\left(-30 \cdot Y_{1}\right)$
$C_{(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$	$\mathcal{L}_{(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}}^{\otimes 36}=K_{C_{(\overline{\mathbf{3}}, 1)_{-2 / 3}}^{\otimes 24}}^{\otimes, 1 / 2}$
$C_{(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}}=V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right)$	$\mathcal{L}_{(\overline{\mathbf{3}}, 1)_{1 / 3}}^{\otimes 36}=K_{C_{(\overline{\mathbf{3}}, 1)_{1 / 3}}^{\otimes 22}}^{\otimes 2} \otimes \mathcal{O}_{C_{(\overline{3}, 1)_{1 / 3}}}\left(-30 \cdot Y_{3}\right)$
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$	$\mathcal{L}_{(\mathbf{1}, \mathbf{1})_{1}}^{\otimes 36}=K_{C_{(1,1)_{1}}}^{\otimes 24}$

Exponents of root bundle constraints for base 3 -folds B_{3} with $K_{B_{3}}^{3}=18$. See [M.B. Cvetič Donagi Liu Ong '21] for exponents of B_{3} with other $K_{B_{3}}^{3}$

- Constraints highly non-trivial:

Infinitely many line bundles with $\chi=3$ but only finitely many root bundles.

- Must not drop common exponents $\left(x^{2}=2^{2} \nRightarrow x=2\right)$.
\Rightarrow Agenda: Vector-like spectra of the QSMs from studying root bundles.

What is known about root bundles?

- Natural to physics: Spin bundle S satisfies $S^{2}=K_{C}$.
- Natural to physics: Spin bundle S satisfies $S^{2}=K_{C}$.
- Smooth irreducible curve C of genus g : [Grifiths Harris "Principles of algebraic geometry" "94]

Fix $T \in \operatorname{Pic}(C), r \in \mathbb{Z}_{\geq 2}$ with $r \mid \operatorname{deg}(T)$:

- There are exactly $r^{2 g}$ line bundles $\mathcal{L} \in \operatorname{Pic}(C)$ with $\mathcal{L}^{r}=T$.
- Theory: Obtain all roots by twist one such \mathcal{L} with r-torsion points of $\operatorname{Jac}(C)$.
- Practice: Tough. Related: Discrete logarithm in Picard group of elliptic curve used for elliptic-curve cryptography).
- Natural to physics: Spin bundle S satisfies $S^{2}=K_{C}$.
- Smooth irreducible curve C of genus g : [Grifiths Harris "Principles of algebraic geometry" '94]

Fix $T \in \operatorname{Pic}(C), r \in \mathbb{Z}_{\geq 2}$ with $r \mid \operatorname{deg}(T)$:

- There are exactly $r^{2 g}$ line bundles $\mathcal{L} \in \operatorname{Pic}(C)$ with $\mathcal{L}^{r}=T$.
- Theory: Obtain all roots by twist one such \mathcal{L} with r-torsion points of $\operatorname{Jac}(C)$.
- Practice: Tough. Related: Discrete logarithm in Picard group of elliptic curve used for elliptic-curve cryptography).
- Nodal curve C^{\bullet} of genus g : [Jarves '98], [Caporaso Casagrande Corralba '04]

Fix $T^{\bullet} \in \operatorname{Pic}\left(C^{\bullet}\right), r \in \mathbb{Z}_{\geq 2}$ with $r \mid \operatorname{deg}\left(T^{\bullet}\right)$:

- There are exactly $r^{2 g}$ solutions to $\mathcal{L}^{\bullet} \in \operatorname{Pic}\left(C^{\bullet}\right)$ with $\left(\mathcal{L}^{\bullet}\right)^{r}=T^{\bullet}$.
- Theory: Explicit description from bi-weighted graphs. [Caporaso Casagrande Corralba '04]
- Practice: Combinatoric challenging - often doable.
- Natural to physics: Spin bundle S satisfies $S^{2}=K_{C}$.
- Smooth irreducible curve C of genus g : [Girfifiths Harris "Principles of algebraic geometry" '94]

Fix $T \in \operatorname{Pic}(C), r \in \mathbb{Z}_{\geq 2}$ with $r \mid \operatorname{deg}(T)$:

- There are exactly $r^{2 g}$ line bundles $\mathcal{L} \in \operatorname{Pic}(C)$ with $\mathcal{L}^{r}=T$.
- Theory: Obtain all roots by twist one such \mathcal{L} with r-torsion points of $\operatorname{Jac}(C)$.
- Practice: Tough. Related: Discrete logarithm in Picard group of elliptic curve used for elliptic-curve cryptography).
- Nodal curve C^{\bullet} of genus g : [Jarves ${ }^{1} 98$], [Caporaso Casagrande Corralba ${ }^{\text {'04] }}$

Fix $T^{\bullet} \in \operatorname{Pic}\left(C^{\bullet}\right), r \in \mathbb{Z}_{\geq 2}$ with $r \mid \operatorname{deg}\left(T^{\bullet}\right)$:

- There are exactly $r^{2 g}$ solutions to $\mathcal{L}^{\bullet} \in \operatorname{Pic}\left(C^{\bullet}\right)$ with $\left(\mathcal{L}^{\bullet}\right)^{r}=T^{\bullet}$.
- Theory: Explicit description from bi-weighted graphs. [Caporaso Casagrande Corralba '04]
- Practice: Combinatoric challenging - often doable.

Refined idea

Learn about the vector-like spectra of the QSMs from root bundles on nodal curves.

Example: Bi-weighted graph encoding limit root

Example: Bi-weighted graph encoding limit root

Philosophy: Local, bottom-up and FRST invariant

[M.B. Cvetič Donagi Liu Ong '21], [M.B. Cvetič Liu '21], [M.B. Cvetič Donagi Ong '22]
Advantage: Triangulation invariant estimate of VL spectra for huge families of QSMs

[^0]
Philosophy: Local, bottom-up and FRST invariant

[M.B. Cvetič Donagi Liu Ong '21], [M.B. Cvetič Liu '21], [M.B. Cvetič Donagi Ong '22]
Advantage: Triangulation invariant estimate of VL spectra for huge families of QSMs

$$
\Delta^{\circ} \xrightarrow[\substack{\text { fine regular star } \\ \text { triangulations }}]{ }
$$

| Family $B_{3}\left(\Delta^{\circ}\right)$
 of toric F-theory
 base 3-folds |
| :---: | :---: |

[Klevers Peña Oehlmann Piragua Reuter '14], [Cvetič Klevers Peña Oehlmann Reuter '15], [Cvetič Lin Liu Oehlmann '18], [Cvetič Halverson Lin Liu Tian '19].

Interlude: Computer algebra systems

- Triangulations in [M.B. Cvetič Donagi Ong '22] done with the modern computer algebra system OSCAR, which - due to the use of the Julia programming language - is expected to be very performant.
- For fast triangulations, also look at CY-Tools [Liam McAllister group], which hopefully can be available via OSCAR soon.

Towards "good" physical roots

(Naive) Brill-Noether theory for root bundles

Discriminate the $r^{2 g}$ line bundles $\mathcal{L} \in \operatorname{Pic}(C)$ with $\mathcal{L}^{r}=T$ according to $h^{0}(C, \mathcal{L})$:

$$
\begin{equation*}
r^{2 g}=N_{0}+N_{1}+N_{2}+\ldots, \tag{1}
\end{equation*}
$$

where N_{i} is the number of those root bundles \mathcal{L} with $h^{0}(C, \mathcal{L})=i$.

Towards "good" physical roots

(Naive) Brill-Noether theory for root bundles

Discriminate the $r^{2 g}$ line bundles $\mathcal{L} \in \operatorname{Pic}(C)$ with $\mathcal{L}^{r}=T$ according to $h^{0}(C, \mathcal{L})$:

$$
\begin{equation*}
r^{2 g}=N_{0}+N_{1}+N_{2}+\ldots, \tag{1}
\end{equation*}
$$

where N_{i} is the number of those root bundles \mathcal{L} with $h^{0}(C, \mathcal{L})=i$.

Current standing

- Systematic answer unknown (to my knowledge).
- For sufficiently simple setups can count N_{i}, but:
- Ignorance: Currently, we can sometimes only compute a lower bound to h^{0}.
- Jumping circuits: h^{0} can jump if nodes are specially aligned. [M.B. Cvetic Donagi Ong '22]
\Rightarrow Denote the number of these cases by $\widetilde{N}_{\geq i}$.

$$
\begin{equation*}
r^{2 g}=\left(\widetilde{N}_{0}+\widetilde{N}_{\geq 0}\right)+\left(\widetilde{N}_{1}+\widetilde{N}_{\geq 1}\right)+\ldots \tag{2}
\end{equation*}
$$

Brill-Noether numbers of $(\overline{3}, 2)_{1 / 6}$ in QSMs

- First estimates computed in [M.B. Cvetič Liu '21]:
- count "simple" root bundles with minimal h^{0},
- no estimate for $\widetilde{N}_{\geq i}$.
- Refinements/extensions in [M.B. Cvetič Donagi Ong '22]:
- count all root bundles,
- discriminate via line bundle cohomology on rational tree-like nodal curves,

QSM-family (KS polytope)	\# FRSTs $\\| h^{0}=3$	$h^{0} \geq 3$	$h^{0}=4$	$h^{0} \geq 4$	
Δ_{8}°	$\sim 10^{15}$	57.3%	$?$	$?$	$?$
Δ_{4}°	$\sim 10^{11}$	53.6%	$?$	$?$	$?$
Δ_{134}°	$\sim 10^{10}$	48.7%	$?$	$?$	$?$
$\Delta_{128}^{\circ}, \Delta_{130}^{\circ}, \Delta_{136}^{\circ}, \Delta_{236}^{\circ}$	$\sim 10^{11}$	42.0%	$?$	$?$	$?$

Brill-Noether numbers of $(\overline{3}, 2)_{1 / 6}$ in QSMs

- First estimates computed in [M.B. Cvetič Liu '21]:
- count "simple" root bundles with minimal h^{0},
- no estimate for $N_{>}$
- Refinements/extensions in [M.B. Cvetič Donagi Ong '22]:
- count all root bundles,
- discriminate via line bundle cohomology on rational tree-like nodal curves,

QSM-family (KS polytope)	\# FRSTs	$h^{0}=3$	$h^{0} \geq 3$	$h^{0}=4$	$h^{0} \geq 4$
Δ_{8}°	$\sim 10^{15}$	76.4%	23.6%		
Δ_{4}°	$\sim 10^{11}$	99.0%	1.0%		
Δ_{134}°	$\sim 10^{10}$	99.8%	0.2%		
$\Delta_{128}^{\circ}, \Delta_{130}^{\circ}, \Delta_{136}^{\circ}, \Delta_{236}^{\circ}$	$\sim 10^{11}$	99.9%	0.1%		

Can we do better for $B_{3}\left(\Delta_{4}^{\circ}\right)$? The 1% contains ...

- Stationary circuits with $h^{0}=3$:

Can we do better for $B_{3}\left(\triangle_{4}^{\circ}\right)$? The 1% contains ...

- Stationary circuits with $h^{0}=3$:

- Jumping circuit with $h^{0}=4$:

Can we do better for $B_{3}\left(\Delta_{4}^{\circ}\right)$? The 1% contains

- Stationary circuits with $h^{0}=3$:

- Jumping circuit with $h^{0}=4$:

Mistake in first preprint [M.B. Cvetič Donagi Ong '22]

- We wrongly computed h^{0} for the jumping circuit. Correction on the ArXiV. $\Rightarrow B_{3}\left(\Delta_{4}^{\circ}\right): 99.995 \%$ of solutions to necessary root bundle constraint have $h^{0}=3$.

Brill-Noether numbers of $(\overline{3}, 2)_{1 / 6}$ in QSMs [m... cretie Donasi Ong '22]

QSM-family (polytope)	$h^{0}=3$	$h^{0} \geq 3$	$h^{0}=4$	$h^{0} \geq 4$	$h^{0}=5$	$h^{0} \geq 5$	$h^{0}=6$	$h^{0} \geq 6$
Δ_{88}°	74.9	22.1	2.5	0.5	0.0	0.0		
Δ_{110}°	82.4	14.1	3.1	0.4	0.0			
$\Delta_{272}^{\circ}, \Delta_{274}^{\circ}$	78.1	18.0	3.4	0.5	0.0	0.0		
Δ_{387}°	73.8	21.9	3.5	0.7	0.0	0.0		
$\Delta_{798}^{\circ}, \Delta_{808}^{\circ}, \Delta_{810}^{\circ}, \Delta_{812}^{\circ}$	77.0	17.9	4.4	0.7	0.0	0.0		
Δ_{254}°	95.9	0.5	3.5	0.0	0.0	0.0		
Δ_{52}°	95.3	0.7	3.9	0.0	0.0	0.0		
Δ_{302}°	95.9	0.5	3.5	0.0	0.0			
Δ_{786}°	94.8	0.3	4.8	0.0	0.0	0.0		
Δ_{762}°	94.8	0.3	4.9	0.0	0.0	0.0		
Δ_{417}°	94.8	0.3	4.8	0.0	0.0	0.0	0.0	
Δ_{838}°	94.7	0.3	5.0	0.0	0.0	0.0		
Δ_{782}°	94.6	0.3	5.0	0.0	0.0	0.0		
$\Delta_{377}^{\circ}, \Delta_{499}^{\circ}, \Delta_{503}^{\circ}$	93.4	0.2	6.2	0.0	0.1	0.0	0.0	
Δ_{1348}°	93.7	0.0	6.2	0.0	0.1		0.0	
$\Delta_{882}^{\circ}, \Delta_{856}^{\circ}$	93.4	0.3	6.2	0.0	0.1	0.0	0.0	
Δ_{1340}°	92.3	0.0	7.6	0.0	0.1		0.0	
Δ_{1879}°	92.3	0.0	7.5	0.0	0.1		0.0	
Δ_{1384}°	90.9	0.0	8.9	0.0	0.2		0.0	

- Statistical observation (cf. [talk by W. Taylorf):

In QSMs, absence of vector-like exotics in $(\overline{\mathbf{3}}, \mathbf{2})_{1 / 6},(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3},(\mathbf{1}, \mathbf{1})_{1}$ likely, but ...

- Sufficient condition for quantization of G_{4}-flux? [Jefferson Taylor Turner '21].
- F-theory gauge potential
- may select (proper) subset of these root bundles,
- lead to correlated choices on distinct matter curves.
- Vector-like spectra on $C_{\mathbf{R}}^{\bullet}$ "upper bound" to those on $C_{\mathbf{R}}$. \leftrightarrow Understand "drops" from Yukawa interactions? [Cvetič Lin Liu Zhang Zoccarato '19] \rightarrow Towards the Higgs ...
- Computationally, Higgs curve currently too challenging.
- Need Brill-Noether theory for root bundles on nodal curves.

Map from (dual) graphs (and a couple of integers) to Brill-Noether numbers.
\leftrightarrow Arena for machine learning? [w.i.p. with R. Hochwert]

- Probability/statistics for F-theory setups to arise without vector-like exotics.
部

[^0]: [Klevers Peña Oehlmann Piragua Reuter '14], [Cvetič Klevers Peña Oehlmann Reuter '15], [Cvetič Lin Liu Oehlmann '18], [Cvetič Halverson Lin Liu Tian '19],

